Temporal regulation of the Xenopus FGF receptor in development: a translation inhibitory element in the 3' untranslated region.
نویسندگان
چکیده
Early frog embryogenesis depends on a maternal pool of mRNA to execute critical intercellular signalling events. FGF receptor-1, which is required for normal development, is stored as a stable, untranslated maternal mRNA transcript in the fully grown immature oocyte, but is translationally activated at meiotic maturation. We have identified a short cis-acting element in the FGF receptor 3' untranslated region that inhibits translation of synthetic mRNA. This inhibitory element is sufficient to inhibit translation of heterologous reporter mRNA in the immature oocyte without changing RNA stability. Deletion of the poly(A) tract or polyadenylation signal sequences does not affect translational inhibition by this element. At meiotic maturation, we observe the reversal of translational repression mediated by the inhibitory element, mimicking that seen with endogenous maternal FGF receptor mRNA at meiosis. In addition, the activation of synthetic transcripts at maturation does not appear to require poly(A) lengthening. We also show that an oocyte cytoplasmic protein specifically binds the 3' inhibitory element, suggesting that translational repression of Xenopus FGF receptor-1 maternal mRNA in the oocytes is mediated by RNA-protein interactions. These data describe a mechanism of translational control that appears to be independent of poly(A) changes.
منابع مشابه
Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation.
A strict temporal order of maternal mRNA translation is essential for meiotic cell cycle progression in oocytes of the frog Xenopus laevis. The molecular mechanisms controlling the ordered pattern of mRNA translational activation have not been elucidated. We report a novel role for the neural stem cell regulatory protein, Musashi, in controlling the translational activation of the mRNA encoding...
متن کاملEnforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression.
Meiotic cell-cycle progression in progesterone-stimulated Xenopus oocytes requires that the translation of pre-existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3' untranslated region (3' UTR), which respond to cell cycle-dependant signalling. One element that has been previously implicated in the temporal control of mR...
متن کاملPost-transcriptional regulation of Xwnt-8 expression is required for normal myogenesis during vertebrate embryonic development.
The Xenopus Wnt-8 gene is transiently expressed in ventral and lateral mesoderm during gastrulation and plays a critical role in patterning these tissues. In the current study, we show that the spatial and temporal pattern of expression of endogenous Xwnt-8 is regulated, in part, at a post-transcriptional level. We have identified a novel sequence element in the 3' untranslated region of the Xw...
متن کاملDerepression of the Her-2 uORF is mediated by a novel post-transcriptional control mechanism in cancer cells.
Transcripts harboring 5' upstream open reading frames (uORFs) are often found in genes controlling cell growth including receptors, oncogenes, or growth factors. uORFs can modulate translation or RNA stability and mediate inefficient translation of these potent proteins under normal conditions. In dysregulated cancer cells, where the gene product, for example Her-2 receptor, is overexpressed, p...
متن کاملThe RNA-binding protein Mex3b has a fine-tuning system for mRNA regulation in early Xenopus development.
Post-transcriptional control by RNA-binding proteins is a precise way to assure appropriate levels of gene expression. Here, we identify a novel mRNA regulatory system involving Mex3b (RKHD3) and demonstrate its role in FGF signaling. mex3b mRNA has a 3' long conserved UTR, named 3'LCU, which contains multiple elements for both mRNA destabilization and translational enhancement. Notably, Mex3b ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 121 6 شماره
صفحات -
تاریخ انتشار 1995